RU-Net: Regularized Unrolling Network for Scene Graph Generation

Scene graph generation (SGG) aims to detect objects and predict the relationships between each pair of objects. Existing SGG methods usually suffer from several issues, including 1) ambiguous object representations, as graph neural network-based message passing (GMP) modules are typically sensitive to spurious inter-node correlations, and 2) low diversity in relationship predictions due to severe class imbalance and a large number of missing annotations. To address both problems, in this paper, we propose a regularized unrolling network (RU-Net). We first study the relation between GMP and graph Laplacian denoising (GLD) from the perspective of the unrolling technique, determining that GMP can be formulated as a solver for GLD. Based on this observation, we propose an unrolled message passing module and introduce an $\ell_p$-based graph regularization to suppress spurious connections between nodes. Second, we propose a group diversity enhancement module that promotes the prediction diversity of relationships via rank maximization. Systematic experiments demonstrate that RU-Net is effective under a variety of settings and metrics. Furthermore, RU-Net achieves new state-of-the-arts on three popular databases: VG, VRD, and OI. Code is available at https://github.com/siml3/RU-Net.

PDF Abstract CVPR 2022 PDF CVPR 2022 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here