Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights

15 Nov 2016  ·  Gene Cheung, Weng-Tai Su, Yu Mao, Chia-Wen Lin ·

In a semi-supervised learning scenario, (possibly noisy) partially observed labels are used as input to train a classifier, in order to assign labels to unclassified samples. In this paper, we study this classifier learning problem from a graph signal processing (GSP) perspective. Specifically, by viewing a binary classifier as a piecewise constant graph-signal in a high-dimensional feature space, we cast classifier learning as a signal restoration problem via a classical maximum a posteriori (MAP) formulation. Unlike previous graph-signal restoration works, we consider in addition edges with negative weights that signify anti-correlation between samples. One unfortunate consequence is that the graph Laplacian matrix $\mathbf{L}$ can be indefinite, and previously proposed graph-signal smoothness prior $\mathbf{x}^T \mathbf{L} \mathbf{x}$ for candidate signal $\mathbf{x}$ can lead to pathological solutions. In response, we derive an optimal perturbation matrix $\boldsymbol{\Delta}$ - based on a fast lower-bound computation of the minimum eigenvalue of $\mathbf{L}$ via a novel application of the Haynsworth inertia additivity formula---so that $\mathbf{L} + \boldsymbol{\Delta}$ is positive semi-definite, resulting in a stable signal prior. Further, instead of forcing a hard binary decision for each sample, we define the notion of generalized smoothness on graph that promotes ambiguity in the classifier signal. Finally, we propose an algorithm based on iterative reweighted least squares (IRLS) that solves the posed MAP problem efficiently. Extensive simulation results show that our proposed algorithm outperforms both SVM variants and graph-based classifiers using positive-edge graphs noticeably.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods