Robust Principal Component Analysis Using a Novel Kernel Related with the L1-Norm

25 May 2021  ·  Hongyi Pan, Diaa Badawi, Erdem Koyuncu, A. Enis Cetin ·

We consider a family of vector dot products that can be implemented using sign changes and addition operations only. The dot products are energy-efficient as they avoid the multiplication operation entirely. Moreover, the dot products induce the $\ell_1$-norm, thus providing robustness to impulsive noise. First, we analytically prove that the dot products yield symmetric, positive semi-definite generalized covariance matrices, thus enabling principal component analysis (PCA). Moreover, the generalized covariance matrices can be constructed in an Energy Efficient (EEF) manner due to the multiplication-free property of the underlying vector products. We present image reconstruction examples in which our EEF PCA method result in the highest peak signal-to-noise ratios compared to the ordinary $\ell_2$-PCA and the recursive $\ell_1$-PCA.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods