Robust Network Architecture Search via Feature Distortion Restraining

The vulnerability of Deep Neural Networks, i.e., susceptibility to adversarial attacks, severely limits the application of DNNs in security-sensitive domains. Most of existing methods improve model robustness from weight optimization, such as adversarial training. However, the architecture of DNNs is also a key factor to robustness, which is often neglected or underestimated. We propose Robust Network Architecture Search (RNAS) to obtain a robust network against adversarial attacks. We observe that an adversarial perturbation distorting the non-robust features in latent feature space can further aggravate misclassification. Based on this observation, we search the robust architecture through restricting feature distortion in the search process. Specifically, we define a network vulnerability metric based on feature distortion as a constraint in the search process. This process is modeled as a multi-objective bilevel optimization problem and a novel algorithm is proposed to solve this optimization. Extensive experiments conducted on CIFAR-10/100 and SVHN show that RNAS achieves the best robustness under various adversarial attacks compared with extensive baselines and SOTA methods.

PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here