Robust Graph Data Learning with Latent Graph Convolutional Representation

29 Sep 2021  ·  Bo Jiang, Ziyan Zhang, Bin Luo ·

Graph Convolutional Representation (GCR) has achieved impressive performance for graph data representation. However, existing GCR is generally defined on the input fixed graph which may restrict the representation capacity and also be vulnerable to the structural attacks and noises. To address this issue, we propose a novel Latent Graph Convolutional Representation (LatGCR) for robust graph data representation and learning. Our LatGCR is derived based on reformulating graph convolutional representation from the aspect of graph neighborhood reconstruction. Given an input graph $\textbf{A}$, LatGCR aims to generate a flexible latent graph $\tilde{\textbf{A}}$ for graph convolutional representation which obviously enhances the representation capacity and also performs robustly w.r.t graph structural attacks and noises. Moreover, LatGCR is implemented in a self-supervised manner and thus provides a basic block for both supervised and unsupervised graph learning tasks. Experiments on several datasets demonstrate the effectiveness and robustness of LatGCR.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here