Robust Gaussian Process Regression Based on Iterative Trimming

22 Nov 2020  ·  Zhao-Zhou Li, Lu Li, Zhengyi Shao ·

The Gaussian process (GP) regression can be severely biased when the data are contaminated by outliers. This paper presents a new robust GP regression algorithm that iteratively trims the most extreme data points. While the new algorithm retains the attractive properties of the standard GP as a nonparametric and flexible regression method, it can greatly improve the model accuracy for contaminated data even in the presence of extreme or abundant outliers. It is also easier to implement compared with previous robust GP variants that rely on approximate inference. Applied to a wide range of experiments with different contamination levels, the proposed method significantly outperforms the standard GP and the popular robust GP variant with the Student-t likelihood in most test cases. In addition, as a practical example in the astrophysical study, we show that this method can precisely determine the main-sequence ridge line in the color-magnitude diagram of star clusters.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods