Robust Fine-Tuning of Deep Neural Networks with Hessian-based Generalization Guarantees

6 Jun 2022  ·  Haotian Ju, Dongyue Li, Hongyang R. Zhang ·

We consider fine-tuning a pretrained deep neural network on a target task. We study the generalization properties of fine-tuning to understand the problem of overfitting, which has often been observed (e.g., when the target dataset is small or when the training labels are noisy). Existing generalization measures for deep networks depend on notions such as distance from the initialization (i.e., the pretrained network) of the fine-tuned model and noise stability properties of deep networks. This paper identifies a Hessian-based distance measure through PAC-Bayesian analysis, which is shown to correlate well with observed generalization gaps of fine-tuned models. Theoretically, we prove Hessian distance-based generalization bounds for fine-tuned models. We also describe an extended study of fine-tuning against label noise, where overfitting remains a critical problem. We present an algorithm and a generalization error guarantee for this algorithm under a class conditional independent noise model. Empirically, we observe that the Hessian-based distance measure can match the scale of the observed generalization gap of fine-tuned models in practice. We also test our algorithm on several image classification tasks with noisy training labels, showing gains over prior methods and decreases in the Hessian distance measure of the fine-tuned model.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here