Robust Estimation and Generative Adversarial Nets

4 Oct 2018  ·  Chao Gao, jiyi LIU, Yuan YAO, Weizhi Zhu ·

Robust estimation under Huber's $\epsilon$-contamination model has become an important topic in statistics and theoretical computer science. Statistically optimal procedures such as Tukey's median and other estimators based on depth functions are impractical because of their computational intractability. In this paper, we establish an intriguing connection between $f$-GANs and various depth functions through the lens of $f$-Learning. Similar to the derivation of $f$-GANs, we show that these depth functions that lead to statistically optimal robust estimators can all be viewed as variational lower bounds of the total variation distance in the framework of $f$-Learning. This connection opens the door of computing robust estimators using tools developed for training GANs. In particular, we show in both theory and experiments that some appropriate structures of discriminator networks with hidden layers in GANs lead to statistically optimal robust location estimators for both Gaussian distribution and general elliptical distributions where first moment may not exist.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here