Robust conditional GANs under missing or uncertain labels

9 Jun 2019  ·  Kiran Koshy Thekumparampil, Sewoong Oh, Ashish Khetan ·

Matching the performance of conditional Generative Adversarial Networks with little supervision is an important task, especially in venturing into new domains. We design a new training algorithm, which is robust to missing or ambiguous labels. The main idea is to intentionally corrupt the labels of generated examples to match the statistics of the real data, and have a discriminator process the real and generated examples with corrupted labels. We showcase the robustness of this proposed approach both theoretically and empirically. We show that minimizing the proposed loss is equivalent to minimizing true divergence between real and generated data up to a multiplicative factor, and characterize this multiplicative factor as a function of the statistics of the uncertain labels. Experiments on MNIST dataset demonstrates that proposed architecture is able to achieve high accuracy in generating examples faithful to the class even with only a few examples per class.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here