Robust Bayesian Inference for Discrete Outcomes with the Total Variation Distance

26 Oct 2020  ·  Jeremias Knoblauch, Lara Vomfell ·

Models of discrete-valued outcomes are easily misspecified if the data exhibit zero-inflation, overdispersion or contamination. Without additional knowledge about the existence and nature of this misspecification, model inference and prediction are adversely affected. Here, we introduce a robust discrepancy-based Bayesian approach using the Total Variation Distance (TVD). In the process, we address and resolve two challenges: First, we study convergence and robustness properties of a computationally efficient estimator for the TVD between a parametric model and the data-generating mechanism. Second, we provide an efficient inference method adapted from Lyddon et al. (2019) which corresponds to formulating an uninformative nonparametric prior directly over the data-generating mechanism. Lastly, we empirically demonstrate that our approach is robust and significantly improves predictive performance on a range of simulated and real world data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here