Robust and Parallel Bayesian Model Selection

19 Oct 2016  ·  Michael Minyi Zhang, Henry Lam, Lizhen Lin ·

Effective and accurate model selection is an important problem in modern data analysis. One of the major challenges is the computational burden required to handle large data sets that cannot be stored or processed on one machine. Another challenge one may encounter is the presence of outliers and contaminations that damage the inference quality. The parallel "divide and conquer" model selection strategy divides the observations of the full data set into roughly equal subsets and perform inference and model selection independently on each subset. After local subset inference, this method aggregates the posterior model probabilities or other model/variable selection criteria to obtain a final model by using the notion of geometric median. This approach leads to improved concentration in finding the "correct" model and model parameters and also is provably robust to outliers and data contamination.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here