Robust and Interpretable COVID-19 Diagnosis on Chest X-ray Images using Adversarial Training

23 Nov 2023  ·  Karina Yang, Alexis Bennett, Dominique Duncan ·

The novel 2019 Coronavirus disease (COVID-19) global pandemic is a defining health crisis. Recent efforts have been increasingly directed towards achieving quick and accurate detection of COVID-19 across symptomatic patients to mitigate the intensity and spread of the disease. Artificial intelligence (AI) algorithms applied to chest X-ray (CXR) images have emerged as promising diagnostic tools, and previous work has demonstrated impressive classification performances. However, such methods have faced criticisms from physicians due to their black-box reasoning process and unpredictable nature. In contrast to professional radiologist diagnosis, AI systems often lack generalizability, explainability, and robustness in the clinical decision making process. In our work, we address these issues by first proposing an extensive baseline study, training and evaluating 21 convolutional neural network (CNN) models on a diverse set of 33,000+ CXR images to classify between healthy, COVID-19, and non-COVID-19 pneumonia CXRs. Our resulting models achieved a 3-way classification accuracy, recall, and precision of up to 97.03\%, 97.97\%, and 99.95\%, respectively. Next, we investigate the effectiveness of adversarial training on model robustness and explainability via Gradient-weighted Class Activation Mapping (Grad-CAM) heatmaps. We find that adversarially trained models not only significantly outperform their standard counterparts on classifying perturbed images, but also yield saliency maps that 1) better specify clinically relevant features, 2) are robust against extraneous artifacts, and 3) agree considerably more with expert radiologist findings.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here