RNN Controller for Lane-Keeping Systems with Robustness and Safety Verification

16 Sep 2023  ·  Ying Shuai Quan, Jin Sung Kim, Chung Choo Chung ·

This paper proposes a Recurrent Neural Network (RNN) controller for lane-keeping systems, effectively handling model uncertainties and disturbances. First, quadratic constraints cover the nonlinearities brought by the RNN controller, and the linear fractional transformation method models the dynamics of system uncertainties. Second, we prove the robust stability of the lane-keeping system in the presence of uncertain vehicle speed using a linear matrix inequality. Then, we define a reachable set for the lane-keeping system. Finally, to confirm the safety of the lane-keeping system with tracking error bound, we formulate semidefinite programming to approximate the outer set of the reachable set. Numerical experiments demonstrate that this approach confirms the stabilizing RNN controller and validates the safety with an untrained dataset with untrained varying road curvatures.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods