RIS-Aided Integrated Sensing and Communication: Joint Beamforming and Reflection Design

22 Feb 2023  ·  Honghao Luo, Rang Liu, Ming Li, Qian Liu ·

Integrated sensing and communication (ISAC) has been envisioned as a promising technique to alleviate the spectrum congestion problem. Inspired by the applications of reconfigurable intelligent surface (RIS) in dynamically manipulating wireless propagation environment, in this paper, we investigate to deploy a RIS in an ISAC system to pursue performance improvement. Particularly, we consider a RIS-assisted ISAC system where a multi-antenna base station (BS) performs multi-target detection and multi-user communication with the assistance of a RIS. Our goal is maximizing the weighted summation of target detection signal-to-noise ratios (SNRs) by jointly optimizing the transmit beamforming and the RIS reflection coefficients, while satisfying the communication quality-of-service (QoS) requirement, the total transmit power budget, and the restriction of RIS phase-shift. An efficient alternating optimization algorithm combining the majorization-minimization (MM), penalty-based, and manifold optimization methods is developed to solve the resulting complicated non-convex optimization problem. Simulation results illustrate the advantages of deploying RIS in ISAC systems and the effectiveness of our proposed algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods