This paper presents the novel Riemannian Fusion Network (RFNet), a deep neural architecture for learning spatial and temporal information from Electroencephalogram (EEG) for a number of different EEG-based Brain Computer Interface (BCI) tasks and applications. The spatial information relies on Spatial Covariance Matrices (SCM) of multi-channel EEG, whose space form a Riemannian Manifold due to the Symmetric and Positive Definite structure... (read more)
PDFMETHOD | TYPE | |
---|---|---|
![]() |
Working Memory Models |