Review of the Learning-based Camera and Lidar Simulation Methods for Autonomous Driving Systems

29 Jan 2024  ·  Hamed Haghighi, Xiaomeng Wang, Hao Jing, Mehrdad Dianati ·

Perception sensors, particularly camera and Lidar, are key elements of Autonomous Driving Systems (ADS) that enable them to comprehend their surroundings for informed driving and control decisions. Therefore, developing realistic camera and Lidar simulation methods, also known as camera and Lidar models, is of paramount importance to effectively conduct simulation-based testing for ADS. Moreover, the rise of deep learning-based perception models has propelled the prevalence of perception sensor models as valuable tools for synthesising diverse training datasets. The traditional sensor simulation methods rely on computationally expensive physics-based algorithms, specifically in complex systems such as ADS. Hence, the current potential resides in learning-based models, driven by the success of deep generative models in synthesising high-dimensional data. This paper reviews the current state-of-the-art in learning-based sensor simulation methods and validation approaches, focusing on two main types of perception sensors: cameras and Lidars. This review covers two categories of learning-based approaches, namely raw-data-based and object-based models. Raw-data-based methods are explained concerning the employed learning strategy, while object-based models are categorised based on the type of error considered. Finally, the paper illustrates commonly used validation techniques for evaluating perception sensor models and highlights the existing research gaps in the area.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here