Rethinking Differentiable Search for Mixed-Precision Neural Networks

CVPR 2020  ·  Zhaowei Cai, Nuno Vasconcelos ·

Low-precision networks, with weights and activations quantized to low bit-width, are widely used to accelerate inference on edge devices. However, current solutions are uniform, using identical bit-width for all filters. This fails to account for the different sensitivities of different filters and is suboptimal. Mixed-precision networks address this problem, by tuning the bit-width to individual filter requirements. In this work, the problem of optimal mixed-precision network search (MPS) is considered. To circumvent its difficulties of discrete search space and combinatorial optimization, a new differentiable search architecture is proposed, with several novel contributions to advance the efficiency by leveraging the unique properties of the MPS problem. The resulting Efficient differentiable MIxed-Precision network Search (EdMIPS) method is effective at finding the optimal bit allocation for multiple popular networks, and can search a large model, e.g. Inception-V3, directly on ImageNet without proxy task in a reasonable amount of time. The learned mixed-precision networks significantly outperform their uniform counterparts.

PDF Abstract CVPR 2020 PDF CVPR 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here