Resource-Aware Heterogeneous Federated Learning using Neural Architecture Search

9 Nov 2022  ·  Sixing Yu, J. Pablo Muñoz, Ali Jannesari ·

Federated Learning (FL) is extensively used to train AI/ML models in distributed and privacy-preserving settings. Participant edge devices in FL systems typically contain non-independent and identically distributed (Non-IID) private data and unevenly distributed computational resources. Preserving user data privacy while optimizing AI/ML models in a heterogeneous federated network requires us to address data and system/resource heterogeneity. To address these challenges, we propose Resource-aware Federated Learning (RaFL). RaFL allocates resource-aware specialized models to edge devices using Neural Architecture Search (NAS) and allows heterogeneous model architecture deployment by knowledge extraction and fusion. Combining NAS and FL enables on-demand customized model deployment for resource-diverse edge devices. Furthermore, we propose a multi-model architecture fusion scheme allowing the aggregation of the distributed learning results. Results demonstrate RaFL's superior resource efficiency compared to SoTA.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here