Repeated sequential learning increases memory capacity via effective decorrelation in a recurrent neural network

22 Jun 2019  ·  Tomoki Kurikawa, Omri Barak, Kunihiko Kaneko ·

Memories in neural system are shaped through the interplay of neural and learning dynamics under external inputs. By introducing a simple local learning rule to a neural network, we found that the memory capacity is drastically increased by sequentially repeating the learning steps of input-output mappings. The origin of this enhancement is attributed to the generation of a Psuedo-inverse correlation in the connectivity. This is associated with the emergence of spontaneous activity that intermittently exhibits neural patterns corresponding to embedded memories. Stablization of memories is achieved by a distinct bifurcation from the spontaneous activity under the application of each input.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here