Remote State Estimation with Privacy Against Active Eavesdroppers

17 Aug 2023  ·  Matthew Crimson, Justin M. Kennedy, Daniel E. Quevedo ·

This paper considers a cyber-physical system under an active eavesdropping attack. A remote legitimate user estimates the state of a linear plant from the state information received from a sensor. Transmissions from the sensor occur via an insecure and unreliable network. An active eavesdropper may perform an attack during system operation. The eavesdropper intercepts transmissions from the sensor, whilst simultaneously sabotaging the data transfer from the sensor to the remote legitimate user to harm its estimation performance. To maintain state confidentiality, we propose an encoding scheme that is activated on the detection of an eavesdropper. Our scheme transmits noise based on a pseudo-random indicator, pre-arranged at the legitimate user and sensor. The transmission of noise harms the eavesdropper's performance, more than that of the legitimate user. Using the proposed encoding scheme, we impair the eavesdropper's expected estimation performance, whilst minimising expected performance degradation at the legitimate user. We explore the trade-off between state confidentiality and legitimate user performance degradation through selecting the probability that the sensor transmits noise. Under certain design choices, the trace of the expected estimation error covariance of the eavesdropper is greater than that of the legitimate user. Numerical examples are provided to illustrate the proposed encoding scheme.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here