ReLU Deep Neural Networks from the Hierarchical Basis Perspective

10 May 2021  ·  Juncai He, Lin Li, Jinchao Xu ·

We study ReLU deep neural networks (DNNs) by investigating their connections with the hierarchical basis method in finite element methods. First, we show that the approximation schemes of ReLU DNNs for $x^2$ and $xy$ are composition versions of the hierarchical basis approximation for these two functions. Based on this fact, we obtain a geometric interpretation and systematic proof for the approximation result of ReLU DNNs for polynomials, which plays an important role in a series of recent exponential approximation results of ReLU DNNs. Through our investigation of connections between ReLU DNNs and the hierarchical basis approximation for $x^2$ and $xy$, we show that ReLU DNNs with this special structure can be applied only to approximate quadratic functions. Furthermore, we obtain a concise representation to explicitly reproduce any linear finite element function on a two-dimensional uniform mesh by using ReLU DNNs with only two hidden layers.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here