Reliability and Preventive Maintenance of Ducted Wind Turbines

14 Mar 2024  ·  Shafat Sharar, Carl D. Hoover ·

This paper presents a reliability life analysis and preventive maintenance schedule for ducted wind turbines. Ducted wind turbines (DWT) are an emerging segment of the renewable energy industry with innovations that promise reliable, efficient, low-cost energy for consumer and small business markets. Many attempts have been made to build viable ducted turbines over the last century, but until recently none have succeeded commercially. Optimal shroud and blade designs are the focus of most engineering research to improve performance and efficiency, however, we hypothesize that an equally important key to the long-term success of small wind innovations is reliability analysis. For consumers and companies who want to efficiently maximize the lifespan of DWTs, this has significant ramifications. Operating beyond service life can result in catastrophic component failure and high replacement costs, making the technology economically infeasible. Our approach is focused on the analysis of 3.5 kW D3 turbines manufactured by Ducted Wind Turbines, Inc. We develop a component-level reliability analysis using ASTM E3159 and a consumer-level preventative maintenance schedule including failure modes and life estimates. Future research can use these findings to guide options for DWT life extension as well as localized maintenance solutions meant to reduce operational costs while preserving energy output.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods