Reinforcement Learning for Autonomous Driving with Latent State Inference and Spatial-Temporal Relationships

9 Nov 2020  ·  Xiaobai Ma, Jiachen Li, Mykel J. Kochenderfer, David Isele, Kikuo Fujimura ·

Deep reinforcement learning (DRL) provides a promising way for learning navigation in complex autonomous driving scenarios. However, identifying the subtle cues that can indicate drastically different outcomes remains an open problem with designing autonomous systems that operate in human environments. In this work, we show that explicitly inferring the latent state and encoding spatial-temporal relationships in a reinforcement learning framework can help address this difficulty. We encode prior knowledge on the latent states of other drivers through a framework that combines the reinforcement learner with a supervised learner. In addition, we model the influence passing between different vehicles through graph neural networks (GNNs). The proposed framework significantly improves performance in the context of navigating T-intersections compared with state-of-the-art baseline approaches.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here