Regularized Multivariate Functional Principal Component Analysis

24 Jun 2023  ·  Hossein Haghbin, Yue Zhao, Mehdi Maadooliat ·

Multivariate Functional Principal Component Analysis (MFPCA) is a valuable tool for exploring relationships and identifying shared patterns of variation in multivariate functional data. However, controlling the roughness of the extracted Principal Components (PCs) can be challenging. This paper introduces a novel approach called regularized MFPCA (ReMFPCA) to address this issue and enhance the smoothness and interpretability of the multivariate functional PCs. ReMFPCA incorporates a roughness penalty within a penalized framework, using a parameter vector to regulate the smoothness of each functional variable. The proposed method generates smoothed multivariate functional PCs, providing a concise and interpretable representation of the data. Extensive simulations and real data examples demonstrate the effectiveness of ReMFPCA and its superiority over alternative methods. The proposed approach opens new avenues for analyzing and uncovering relationships in complex multivariate functional datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here