Regret Distribution in Stochastic Bandits: Optimal Trade-off between Expectation and Tail Risk

10 Apr 2023  ·  David Simchi-Levi, Zeyu Zheng, Feng Zhu ·

We study the trade-off between expectation and tail risk for regret distribution in the stochastic multi-armed bandit problem. We fully characterize the interplay among three desired properties for policy design: worst-case optimality, instance-dependent consistency, and light-tailed risk. We show how the order of expected regret exactly affects the decaying rate of the regret tail probability for both the worst-case and instance-dependent scenario. A novel policy is proposed to characterize the optimal regret tail probability for any regret threshold. Concretely, for any given $\alpha\in[1/2, 1)$ and $\beta\in[0, \alpha]$, our policy achieves a worst-case expected regret of $\tilde O(T^\alpha)$ (we call it $\alpha$-optimal) and an instance-dependent expected regret of $\tilde O(T^\beta)$ (we call it $\beta$-consistent), while enjoys a probability of incurring an $\tilde O(T^\delta)$ regret ($\delta\geq\alpha$ in the worst-case scenario and $\delta\geq\beta$ in the instance-dependent scenario) that decays exponentially with a polynomial $T$ term. Such decaying rate is proved to be best achievable. Moreover, we discover an intrinsic gap of the optimal tail rate under the instance-dependent scenario between whether the time horizon $T$ is known a priori or not. Interestingly, when it comes to the worst-case scenario, this gap disappears. Finally, we extend our proposed policy design to (1) a stochastic multi-armed bandit setting with non-stationary baseline rewards, and (2) a stochastic linear bandit setting. Our results reveal insights on the trade-off between regret expectation and regret tail risk for both worst-case and instance-dependent scenarios, indicating that more sub-optimality and inconsistency leave space for more light-tailed risk of incurring a large regret, and that knowing the planning horizon in advance can make a difference on alleviating tail risks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here