RefineLoc: Iterative Refinement for Weakly-Supervised Action Localization

30 Mar 2019  ·  Alejandro Pardo, Humam Alwassel, Fabian Caba Heilbron, Ali Thabet, Bernard Ghanem ·

Video action detectors are usually trained using datasets with fully-supervised temporal annotations. Building such datasets is an expensive task. To alleviate this problem, recent methods have tried to leverage weak labeling, where videos are untrimmed and only a video-level label is available. In this paper, we propose RefineLoc, a novel weakly-supervised temporal action localization method. RefineLoc uses an iterative refinement approach by estimating and training on snippet-level pseudo ground truth at every iteration. We show the benefit of this iterative approach and present an extensive analysis of five different pseudo ground truth generators. We show the effectiveness of our model on two standard action datasets, ActivityNet v1.2 and THUMOS14. RefineLoc shows competitive results with the state-of-the-art in weakly-supervised temporal localization. Additionally, our iterative refinement process is able to significantly improve the performance of two state-of-the-art methods, setting a new state-of-the-art on THUMOS14.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here