Contrastive variational information bottleneck for aspect-based sentiment analysis

6 Mar 2023  ·  Mingshan Chang, Min Yang, Qingshan Jiang, Ruifeng Xu ·

Deep learning techniques have dominated the literature on aspect-based sentiment analysis (ABSA), achieving state-of-the-art performance. However, deep models generally suffer from spurious correlations between input features and output labels, which hurts the robustness and generalization capability by a large margin. In this paper, we propose to reduce spurious correlations for ABSA, via a novel Contrastive Variational Information Bottleneck framework (called CVIB). The proposed CVIB framework is composed of an original network and a self-pruned network, and these two networks are optimized simultaneously via contrastive learning. Concretely, we employ the Variational Information Bottleneck (VIB) principle to learn an informative and compressed network (self-pruned network) from the original network, which discards the superfluous patterns or spurious correlations between input features and prediction labels. Then, self-pruning contrastive learning is devised to pull together semantically similar positive pairs and push away dissimilar pairs, where the representations of the anchor learned by the original and self-pruned networks respectively are regarded as a positive pair while the representations of two different sentences within a mini-batch are treated as a negative pair. To verify the effectiveness of our CVIB method, we conduct extensive experiments on five benchmark ABSA datasets and the experimental results show that our approach achieves better performance than the strong competitors in terms of overall prediction performance, robustness, and generalization. Code and data to reproduce the results in this paper is available at: https://github.com/shesshan/CVIB.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods