Viking: Variational Bayesian Variance Tracking

16 Apr 2021  ·  Joseph de Vilmarest, Olivier Wintenberger ·

We consider the problem of time series forecasting in an adaptive setting. We focus on the inference of state-space models under unknown and potentially time-varying noise variances. We introduce an augmented model in which the variances are represented as auxiliary gaussian latent variables in a tracking mode. As variances are nonnegative, a transformation is chosen and applied to these latent variables. The inference relies on the online variational Bayesian methodology, which consists in minimizing a Kullback-Leibler divergence at each time step. We observe that the minimum of the Kullback-Leibler divergence is an extension of the Kalman filter taking into account the variance uncertainty. We design a novel algorithm, named Viking, using these optimal recursive updates. For auxiliary latent variables, we use second-order bounds whose optimum admit closed-form solutions. Experiments on synthetic data show that Viking behaves well and is robust to misspecification.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here