Reconstructing the Noise Manifold for Image Denoising

11 Feb 2020Ioannis MarrasGrigorios G. ChrysosIoannis AlexiouGregory SlabaughStefanos Zafeiriou

Deep Convolutional Neural Networks (CNNs) have been successfully used in many low-level vision problems like image denoising. Although the conditional image generation techniques have led to large improvements in this task, there has been little effort in providing conditional generative adversarial networks (cGAN)[42] with an explicit way of understanding the image noise for object-independent denoising reliable for real-world applications... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet