Real-time VaR Calculations for Crypto Derivatives in kdb+/q

11 Sep 2023  ·  Yutong Chen, Paul Bilokon, Conan Hales, Laura Kerr ·

Cryptocurrency market is known for exhibiting significantly higher volatility than traditional asset classes. Efficient and adequate risk calculation is vital for managing risk exposures in such market environments where extreme price fluctuations occur in short timeframes. The objective of this thesis is to build a real-time computation workflow that provides VaR estimates for non-linear portfolios of cryptocurrency derivatives. Many researchers have examined the predictive capabilities of time-series models within the context of cryptocurrencies. In this work, we applied three commonly used models - EMWA, GARCH and HAR - to capture and forecast volatility dynamics, in conjunction with delta-gamma-theta approach and Cornish-Fisher expansion to crypto derivatives, examining their performance from the perspectives of calculation efficiency and accuracy. We present a calculation workflow which harnesses the information embedded in high-frequency market data and the computation simplicity inherent in analytical estimation procedures. This workflow yields reasonably robust VaR estimates with calculation latencies on the order of milliseconds.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here