Real-time Short Video Recommendation on Mobile Devices

20 Aug 2022  ·  Xudong Gong, Qinlin Feng, Yuan Zhang, Jiangling Qin, Weijie Ding, Biao Li, Peng Jiang, Kun Gai ·

Short video applications have attracted billions of users in recent years, fulfilling their various needs with diverse content. Users usually watch short videos on many topics on mobile devices in a short period of time, and give explicit or implicit feedback very quickly to the short videos they watch. The recommender system needs to perceive users' preferences in real-time in order to satisfy their changing interests. Traditionally, recommender systems deployed at server side return a ranked list of videos for each request from client. Thus it cannot adjust the recommendation results according to the user's real-time feedback before the next request. Due to client-server transmitting latency, it is also unable to make immediate use of users' real-time feedback. However, as users continue to watch videos and feedback, the changing context leads the ranking of the server-side recommendation system inaccurate. In this paper, we propose to deploy a short video recommendation framework on mobile devices to solve these problems. Specifically, we design and deploy a tiny on-device ranking model to enable real-time re-ranking of server-side recommendation results. We improve its prediction accuracy by exploiting users' real-time feedback of watched videos and client-specific real-time features. With more accurate predictions, we further consider interactions among candidate videos, and propose a context-aware re-ranking method based on adaptive beam search. The framework has been deployed on Kuaishou, a billion-user scale short video application, and improved effective view, like and follow by 1.28%, 8.22% and 13.6% respectively.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here