Real-Time Model-Based Quantitative Ultrasound and Radar

16 Feb 2024  ·  Tom Sharon, Yonina C. Eldar ·

Ultrasound and radar signals are highly beneficial for medical imaging as they are non-invasive and non-ionizing. Traditional imaging techniques have limitations in terms of contrast and physical interpretation. Quantitative medical imaging can display various physical properties such as speed of sound, density, conductivity, and relative permittivity. This makes it useful for a wider range of applications, including improving cancer detection, diagnosing fatty liver, and fast stroke imaging. However, current quantitative imaging techniques that estimate physical properties from received signals, such as Full Waveform Inversion, are time-consuming and tend to converge to local minima, making them unsuitable for medical imaging. To address these challenges, we propose a neural network based on the physical model of wave propagation, which defines the relationship between the received signals and physical properties. Our network can reconstruct multiple physical properties in less than one second for complex and realistic scenarios, using data from only eight elements. We demonstrate the effectiveness of our approach for both radar and ultrasound signals.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods