Real-time FPGA Implementation of CNN-based Distributed Fiber Optic Vibration Event Recognition Method

9 Aug 2023  ·  Zhongyao Luo, Zhao Ge, Hao Wu, Ming Tang ·

Utilizing optical fibers to detect and pinpoint vibrations, Distributed Optical Fiber Vibration Sensing (DVS) technology provides real-time monitoring and surveillance of wide-reaching areas. This field has been leveraging Convolutional Neural Networks (CNN). Recently, a study has accomplished end-to-end vibration event recognition, enabling utilization of CNN-based DVS algorithms as real-time embedded system for edge computing in practical application situations. Considering the power consumption of central processing unit (CPU) and graphics processing unit (GPU), and the inflexibility of application-specific integrated circuit (ASIC), field-Programmable gate array (FPGA) is the optimal computing platform for the system. This paper proposes to compress pre-trained network and adopt a novel hardware structure, to design a fully on-chip, pipelined inference accelerator for CNN-based DVS algorithm, without fine tuning or re-training. This design allows for real-time processing with low power consumption and system requirement.An examination has been executed on an existing DVS algorithm based on a 40-layer CNN model comprising 2.7 million parameters. It is completely implemented on-chip, pipelined, with no reduction in accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here