Real-Time Capable Micro-Doppler Signature Decomposition of Walking Human Limbs

25 Nov 2017  ·  Sherif Abdulatif, Fady Aziz, Bernhard Kleiner, Urs Schneider ·

Unique micro-Doppler signature ($\boldsymbol{\mu}$-D) of a human body motion can be analyzed as the superposition of different body parts $\boldsymbol{\mu}$-D signatures. Extraction of human limbs $\boldsymbol{\mu}$-D signatures in real-time can be used to detect, classify and track human motion especially for safety application. In this paper, two methods are combined to simulate $\boldsymbol{\mu}$-D signatures of a walking human. Furthermore, a novel limbs $\mu$-D signature time independent decomposition feasibility study is presented based on features as $\mu$-D signatures and range profiles also known as micro-Range ($\mu$-R). Walking human body parts can be divided into four classes (base, arms, legs, feet) and a decision tree classifier is used. Validation is done and the classifier is able to decompose $\mu$-D signatures of limbs from a walking human signature on real-time basis.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here