Rare Collision Risk Estimation of Autonomous Vehicles with Multi-Agent Situation Awareness

2 May 2024  ·  Mahdieh Zaker, Henk A. P. Blom, Sadegh Soudjani, Abolfazl Lavaei ·

This paper offers a formal framework for the rare collision risk estimation of autonomous vehicles (AVs) with multi-agent situation awareness, affected by different sources of noise in a complex dynamic environment. In our proposed setting, the situation awareness is considered for one of the ego vehicles by aggregating a range of diverse information gathered from other vehicles into a vector. We model AVs equipped with the situation awareness as general stochastic hybrid systems (GSHS) and assess the probability of collision in a lane-change scenario where two self-driving vehicles simultaneously intend to switch lanes into a shared one, while utilizing the time-to-collision measure for decision-making as required. Due to the substantial data requirements of simulation-based methods for the rare collision risk estimation, we leverage a multi-level importance splitting technique, known as interacting particle system-based estimation with fixed assignment splitting (IPS-FAS). This approach allows us to estimate the probability of a rare event by employing a group of interacting particles. Specifically, each particle embodies a system trajectory and engages with others through resampling and branching, focusing computational resources on trajectories with the highest probability of encountering the rare event. The effectiveness of our proposed approach is demonstrated through an extensive simulation of a lane-change scenario.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here