Randomized Nonnegative Matrix Factorization

6 Nov 2017  ·  N. Benjamin Erichson, Ariana Mendible, Sophie Wihlborn, J. Nathan Kutz ·

Nonnegative matrix factorization (NMF) is a powerful tool for data mining. However, the emergence of `big data' has severely challenged our ability to compute this fundamental decomposition using deterministic algorithms. This paper presents a randomized hierarchical alternating least squares (HALS) algorithm to compute the NMF. By deriving a smaller matrix from the nonnegative input data, a more efficient nonnegative decomposition can be computed. Our algorithm scales to big data applications while attaining a near-optimal factorization. The proposed algorithm is evaluated using synthetic and real world data and shows substantial speedups compared to deterministic HALS.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here