Question Type Classification Methods Comparison

3 Jan 2020 Tamirlan Seidakhmetov

The paper presents a comparative study of state-of-the-art approaches for question classification task: Logistic Regression, Convolutional Neural Networks (CNN), Long Short-Term Memory Network (LSTM) and Quasi-Recurrent Neural Networks (QRNN). All models use pre-trained GLoVe word embeddings and trained on human-labeled data... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Logistic Regression
Generalized Linear Models
Memory Network
Working Memory Models
GloVe
Word Embeddings