Approximate Newton policy gradient algorithms

5 Oct 2021  ·  Haoya Li, Samarth Gupta, HsiangFu Yu, Lexing Ying, Inderjit Dhillon ·

Policy gradient algorithms have been widely applied to Markov decision processes and reinforcement learning problems in recent years. Regularization with various entropy functions is often used to encourage exploration and improve stability. This paper proposes an approximate Newton method for the policy gradient algorithm with entropy regularization. In the case of Shannon entropy, the resulting algorithm reproduces the natural policy gradient algorithm. For other entropy functions, this method results in brand-new policy gradient algorithms. We prove that all these algorithms enjoy Newton-type quadratic convergence and that the corresponding gradient flow converges globally to the optimal solution. We use synthetic and industrial-scale examples to demonstrate that the proposed approximate Newton method typically converges in single-digit iterations, often orders of magnitude faster than other state-of-the-art algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here