Quantifying the Performance of Federated Transfer Learning

30 Dec 2019  ·  Qinghe Jing, Weiyan Wang, Junxue Zhang, Han Tian, Kai Chen ·

The scarcity of data and isolated data islands encourage different organizations to share data with each other to train machine learning models. However, there are increasing concerns on the problems of data privacy and security, which urges people to seek a solution like Federated Transfer Learning (FTL) to share training data without violating data privacy. FTL leverages transfer learning techniques to utilize data from different sources for training, while achieving data privacy protection without significant accuracy loss. However, the benefits come with a cost of extra computation and communication consumption, resulting in efficiency problems. In order to efficiently deploy and scale up FTL solutions in practice, we need a deep understanding on how the infrastructure affects the efficiency of FTL. Our paper tries to answer this question by quantitatively measuring a real-world FTL implementation FATE on Google Cloud. According to the results of carefully designed experiments, we verified that the following bottlenecks can be further optimized: 1) Inter-process communication is the major bottleneck; 2) Data encryption adds considerable computation overhead; 3) The Internet networking condition affects the performance a lot when the model is large.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here