Quantifying energy landscape of oscillatory systems: Explosion, pre-solution, and diffusion decomposition

13 Jan 2024  ·  Shirui Bian, Ruisong Zhou, Wei Lin, Chunhe Li ·

The energy landscape theory finds its both extensive and intensive application in studying stochastic dynamics of physical and biological systems. Although the weighted summation of the Gaussian approximation (WSGA) approach has been proposed for quantifying the energy landscape in multistable systems by solving the diffusion equation approximately from moment equations, we are still lacking an accurate approach for quantifying the energy landscape of the periodic oscillatory systems. To address this challenge, we propose an approach, called the diffusion decomposition of the Gaussian approximation (DDGA). Using typical oscillatory systems as examples, we demonstrate the efficacy of the proposed DDGA in quantifying the energy landscape of oscillatory systems and corresponding stochastic dynamics, in comparison with existing approaches. By further applying the DDGA to a high-dimensional cell cycle network, we are able to uncover more intricate biological mechanisms in cell cycle, which cannot be discerned using previously developed approaches.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods