Quantifying and Extrapolating Data Needs in Radio Frequency Machine Learning

7 May 2022  ·  William H. Clark IV, Alan J. Michaels ·

Understanding the relationship between training data and a model's performance once deployed is a fundamental component in the application of machine learning. While the model's deployed performance is dependent on numerous variables within the scope of machine learning, beyond that of the training data itself, the effect of the dataset is isolated in this work to better understand the role training data plays in the problem. This work examines a modulation classification problem in the Radio Frequency domain space, attempting to answer the question of how much training data is required to achieve a desired level of performance, but the procedure readily applies to classification problems across modalities. By repurposing the metrics of transfer potential developed within transfer learning an approach to bound data quantity needs developed given a training approach and machine learning architecture; this approach is presented as a means to estimate data quantity requirements to achieve a target performance. While this approach will require an initial dataset that is germane to the problem space to act as a target dataset on which metrics are extracted, the goal is to allow for the initial data to be orders of magnitude smaller than what is required for delivering a system that achieves the desired performance. An additional benefit of the techniques presented here is that the quality of different datasets can be numerically evaluated and tied together with the quantity of data, and the performance of the system.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here