QCMC: Quasi-conformal Parameterizations for Multiply-connected domains

26 Mar 2014  ·  Kin Tat Ho, Lok Ming Lui ·

This paper presents a method to compute the {\it quasi-conformal parameterization} (QCMC) for a multiply-connected 2D domain or surface. QCMC computes a quasi-conformal map from a multiply-connected domain $S$ onto a punctured disk $D_S$ associated with a given Beltrami differential. The Beltrami differential, which measures the conformality distortion, is a complex-valued function $\mu:S\to\mathbb{C}$ with supremum norm strictly less than 1. Every Beltrami differential gives a conformal structure of $S$. Hence, the conformal module of $D_S$, which are the radii and centers of the inner circles, can be fully determined by $\mu$, up to a M\"obius transformation. In this paper, we propose an iterative algorithm to simultaneously search for the conformal module and the optimal quasi-conformal parameterization. The key idea is to minimize the Beltrami energy subject to the boundary constraints. The optimal solution is our desired quasi-conformal parameterization onto a punctured disk. The parameterization of the multiply-connected domain simplifies numerical computations and has important applications in various fields, such as in computer graphics and vision. Experiments have been carried out on synthetic data together with real multiply-connected Riemann surfaces. Results show that our proposed method can efficiently compute quasi-conformal parameterizations of multiply-connected domains and outperforms other state-of-the-art algorithms. Applications of the proposed parameterization technique have also been explored.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here