Q-SENN: Quantized Self-Explaining Neural Networks

21 Dec 2023  ·  Thomas Norrenbrock, Marco Rudolph, Bodo Rosenhahn ·

Explanations in Computer Vision are often desired, but most Deep Neural Networks can only provide saliency maps with questionable faithfulness. Self-Explaining Neural Networks (SENN) extract interpretable concepts with fidelity, diversity, and grounding to combine them linearly for decision-making. While they can explain what was recognized, initial realizations lack accuracy and general applicability. We propose the Quantized-Self-Explaining Neural Network Q-SENN. Q-SENN satisfies or exceeds the desiderata of SENN while being applicable to more complex datasets and maintaining most or all of the accuracy of an uninterpretable baseline model, out-performing previous work in all considered metrics. Q-SENN describes the relationship between every class and feature as either positive, negative or neutral instead of an arbitrary number of possible relations, enforcing more binary human-friendly features. Since every class is assigned just 5 interpretable features on average, Q-SENN shows convincing local and global interpretability. Additionally, we propose a feature alignment method, capable of aligning learned features with human language-based concepts without additional supervision. Thus, what is learned can be more easily verbalized. The code is published: https://github.com/ThomasNorr/Q-SENN

PDF Abstract
Task Dataset Model Metric Name Metric Value Global Rank Benchmark
Interpretable Machine Learning CUB-200-2011 Q-SENN Top 1 Accuracy 85.9 # 1

Methods


No methods listed for this paper. Add relevant methods here