Q-learning with Nearest Neighbors

NeurIPS 2018  ·  Devavrat Shah, Qiaomin Xie ·

We consider model-free reinforcement learning for infinite-horizon discounted Markov Decision Processes (MDPs) with a continuous state space and unknown transition kernel, when only a single sample path under an arbitrary policy of the system is available. We consider the Nearest Neighbor Q-Learning (NNQL) algorithm to learn the optimal Q function using nearest neighbor regression method. As the main contribution, we provide tight finite sample analysis of the convergence rate. In particular, for MDPs with a $d$-dimensional state space and the discounted factor $\gamma \in (0,1)$, given an arbitrary sample path with "covering time" $ L $, we establish that the algorithm is guaranteed to output an $\varepsilon$-accurate estimate of the optimal Q-function using $\tilde{O}\big(L/(\varepsilon^3(1-\gamma)^7)\big)$ samples. For instance, for a well-behaved MDP, the covering time of the sample path under the purely random policy scales as $ \tilde{O}\big(1/\varepsilon^d\big),$ so the sample complexity scales as $\tilde{O}\big(1/\varepsilon^{d+3}\big).$ Indeed, we establish a lower bound that argues that the dependence of $ \tilde{\Omega}\big(1/\varepsilon^{d+2}\big)$ is necessary.

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods