Proximal Policy Optimization and its Dynamic Version for Sequence Generation

24 Aug 2018 Yi-Lin Tuan Jinzhi Zhang Yujia Li Hung-Yi Lee

In sequence generation task, many works use policy gradient for model optimization to tackle the intractable backpropagation issue when maximizing the non-differentiable evaluation metrics or fooling the discriminator in adversarial learning. In this paper, we replace policy gradient with proximal policy optimization (PPO), which is a proved more efficient reinforcement learning algorithm, and propose a dynamic approach for PPO (PPO-dynamic)... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Entropy Regularization
Regularization
PPO
Policy Gradient Methods