Provably Efficient High-Dimensional Bandit Learning with Batched Feedbacks

22 Nov 2023  ·  Jianqing Fan, Zhaoran Wang, Zhuoran Yang, Chenlu Ye ·

We study high-dimensional multi-armed contextual bandits with batched feedback where the $T$ steps of online interactions are divided into $L$ batches. In specific, each batch collects data according to a policy that depends on previous batches and the rewards are revealed only at the end of the batch. Such a feedback structure is popular in applications such as personalized medicine and online advertisement, where the online data often do not arrive in a fully serial manner. We consider high-dimensional and linear settings where the reward function of the bandit model admits either a sparse or low-rank structure and ask how small a number of batches are needed for a comparable performance with fully dynamic data in which $L = T$. For these settings, we design a provably sample-efficient algorithm which achieves a $ \mathcal{\tilde O}(s_0^2 \log^2 T)$ regret in the sparse case and $ \mathcal{\tilde O} ( r ^2 \log^2 T)$ regret in the low-rank case, using only $L = \mathcal{O}( \log T)$ batches. Here $s_0$ and $r$ are the sparsity and rank of the reward parameter in sparse and low-rank cases, respectively, and $ \mathcal{\tilde O}(\cdot)$ omits logarithmic factors involving the feature dimensions. In other words, our algorithm achieves regret bounds comparable to those in fully sequential setting with only $\mathcal{O}( \log T)$ batches. Our algorithm features a novel batch allocation method that adjusts the batch sizes according to the estimation accuracy within each batch and cumulative regret. Furthermore, we also conduct experiments with synthetic and real-world data to validate our theory.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here