Prompt Guided Transformer for Multi-Task Dense Prediction

28 Jul 2023  ·  Yuxiang Lu, Shalayiding Sirejiding, Yue Ding, Chunlin Wang, Hongtao Lu ·

Task-conditional architecture offers advantage in parameter efficiency but falls short in performance compared to state-of-the-art multi-decoder methods. How to trade off performance and model parameters is an important and difficult problem. In this paper, we introduce a simple and lightweight task-conditional model called Prompt Guided Transformer (PGT) to optimize this challenge. Our approach designs a Prompt-conditioned Transformer block, which incorporates task-specific prompts in the self-attention mechanism to achieve global dependency modeling and parameter-efficient feature adaptation across multiple tasks. This block is integrated into both the shared encoder and decoder, enhancing the capture of intra- and inter-task features. Moreover, we design a lightweight decoder to further reduce parameter usage, which accounts for only 2.7% of the total model parameters. Extensive experiments on two multi-task dense prediction benchmarks, PASCAL-Context and NYUD-v2, demonstrate that our approach achieves state-of-the-art results among task-conditional methods while using fewer parameters, and maintains a significant balance between performance and parameter size.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods