Projection-free Online Learning over Strongly Convex Sets

16 Oct 2020  ·  Yuanyu Wan, Lijun Zhang ·

To efficiently solve online problems with complicated constraints, projection-free algorithms including online frank-wolfe (OFW) and its variants have received significant interest recently. However, in the general case, existing projection-free algorithms only achieved the regret bound of $O(T^{3/4})$, which is worse than the regret of projection-based algorithms, where $T$ is the number of decision rounds. In this paper, we study the special case of online learning over strongly convex sets, for which we first prove that OFW enjoys a better regret bound of $O(T^{2/3})$ for general convex losses. The key idea is to refine the decaying step-size in the original OFW by a simple line search rule. Furthermore, for strongly convex losses, we propose a strongly convex variant of OFW by redefining the surrogate loss function in OFW. We show that it achieves a regret bound of $O(T^{2/3})$ over general convex sets and a better regret bound of $O(\sqrt{T})$ over strongly convex sets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here