Progressive Upsampling Audio Synthesis via Effective Adversarial Training

25 Sep 2019  ·  Youngwoo Cho, Minwook Chang, Gerard Jounghyun Kim, Jaegul Choo ·

This paper proposes a novel generative model called PUGAN, which progressively synthesizes high-quality audio in a raw waveform. PUGAN leverages on the recently proposed idea of progressive generation of higher-resolution images by stacking multiple encode-decoder architectures. To effectively apply it to raw audio generation, we propose two novel modules: (1) a neural upsampling layer and (2) a sinc convolutional layer. Compared to the existing state-of-the-art model called WaveGAN, which uses a single decoder architecture, our model generates audio signals and converts them in a higher resolution in a progressive manner, while using a significantly smaller number of parameters, e.g., 20x smaller for 44.1kHz output, than an existing technique called WaveGAN. Our experiments show that the audio signals can be generated in real-time with the comparable quality to that of WaveGAN with respect to the inception scores and the human evaluation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here