Progress in artificial intelligence applications based on the combination of self-driven sensors and deep learning

30 Jan 2024  ·  Weixiang Wan, Wenjian Sun, Qiang Zeng, Linying Pan, Jingyu Xu, Bo Liu ·

In the era of Internet of Things, how to develop a smart sensor system with sustainable power supply, easy deployment and flexible use has become a difficult problem to be solved. The traditional power supply has problems such as frequent replacement or charging when in use, which limits the development of wearable devices. The contact-to-separate friction nanogenerator (TENG) was prepared by using polychotomy thy lene (PTFE) and aluminum (AI) foils. Human motion energy was collected by human body arrangement, and human motion posture was monitored according to the changes of output electrical signals. In 2012, Academician Wang Zhong lin and his team invented the triboelectric nanogenerator (TENG), which uses Maxwell displacement current as a driving force to directly convert mechanical stimuli into electrical signals, so it can be used as a self-driven sensor. Teng-based sensors have the advantages of simple structure and high instantaneous power density, which provides an important means for building intelligent sensor systems. At the same time, machine learning, as a technology with low cost, short development cycle, strong data processing ability and prediction ability, has a significant effect on the processing of a large number of electrical signals generated by TENG, and the combination with TENG sensors will promote the rapid development of intelligent sensor networks in the future. Therefore, this paper is based on the intelligent sound monitoring and recognition system of TENG, which has good sound recognition capability, and aims to evaluate the feasibility of the sound perception module architecture in ubiquitous sensor networks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here